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Pharmacologically isolated GABAergic irregular spiking and stuttering
interneurons in the mouse visual cortex display highly irregular spike
times, with high coefficients of variation ≈0.9–3, in response to a depo-
larizing, constant current input. This is in marked contrast to cortical
pyramidal cells, which spike quite regularly in response to the same cur-
rent injection. We applied time-series analysis methods to show that the
irregular behavior of the interneurons was not a consequence of low-
dimensional, deterministic processes. These methods were also applied
to the Hindmarsh and Rose neuronal model to confirm that the methods
are adequate for the types of data under investigation. This result has
important consequences for the origin of fluctuations observed in the
cortex in vivo.

1 Introduction

Certain classes of cortical γ -aminobutric acid (GABA)-ergic interneu-
rons have been observed to emit highly irregular spike trains in vitro
(Kawaguchi, 1993; Gupta, Wang, & Markram, 2000; Toledo-Rodriguez et al.,
2004; Stiefel, Englitz, & Sejnowski, 2004) in response to a constant current
injection. This irregular firing is commonly characterized (e.g., Markram
et al., 2004) by a high coefficient of variation (CV) (≈0.9–3) and burst-like
spike sequences interrupted by interburst intervals of unpredictable length
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in response to a constant current. In contrast, other classes of interneurons
and pyramidal cells show highly regular responses with respect to the same
stimulus. The essential question of how this variable output results from
the nonvariable input, that is, what the underlying process of generation or
transduction is, has not been investigated.

Although irregular firing has frequently been described (Kawaguchi,
1993, 1995; Kawaguchi & Kubota, 1996; Cauli et al., 1997, 2000; Gupta et al.,
2000; Kawaguchi & Kondo, 2002; Toledo-Rodriguez et al., 2004), it mainly
served as a physiological indicator to classify the diverse population of in-
terneurons into several subpopulations. In particular, primarily physiolog-
ical criteria have been used for defining the top-level classes, for example,
the neuronal response to a constant current in vitro served to define the
respective classes in the widely used classification schemes by Kawaguchi
(1993) or Gupta et al. (2000). In these schemes, irregular current responses
served to define the irregular spiking (IS) class (Kawaguchi, 1993) and the
stuttering (ST) cells (Gupta et al., 2000), which have recently been confirmed
as separate classes (Markram et al., 2004). Although this demonstrated the
usefulness of the irregular response for classification purposes, no satisfac-
tory explanation has been proposed for it so far. A number of experimental
studies have provided candidate currents relevant for the irregular firing
(Porter et al., 1998; Bennett & Wilson, 1998, 1999; Bennett, Callaway, &
Wilson, 2000), but no models have been proposed that implement these
currents and reproduce the phenomenon.

The observed irregular behavior is in principle compatible with both
stochastic and nonlinear, deterministic (e.g. chaotic) processes. A stochastic
process would indicate that interneurons react strongly to certain fluctua-
tions (Wilson, Chang, & Kitai, 1990; Bennett & Wilson, 1999). These could
be intrinsic, stochastic fluctuations, most likely channel noise, which would
also be present in in vitro recordings with blocked synaptic transmission.
Nonetheless, in vivo they could as well be caused by synaptic input. Thus,
in vitro, the spike patterns would resemble noise, yet in vivo they could pos-
sibly be a temporally precise function of the input or a mixture of both. In
contrast, if the origin of the irregular firing in vitro arose from a nonlinear de-
terministic process in the interneurons, the complex, cortical rhythm could
be a by-product. A number of examples of such processes in neurons are
known from experimental (Hayashi, Nakao, & Hirakawa, 1982; Hayashi,
Ishizuka, & Ohta, 1982; Hayashi, Ishizuka, & Hirakawa, 1983; Canavier,
Perla, & Shepard, 2004; Jeong, Kwak, Kim, & Lee, 2005) and theoretical
studies (Hindmarsh & Rose, 1984; Chay & Rinzel, 1985; Canavier, Clark, &
Byrne, 1990; Schweighofer et al., 2004). This possibility is intriguing since
interneurons have been shown to generate the gamma rhythms (35–80 Hz)
found in the cortical network (Buhl, Tams, & Fisahn, 1998; Fisahn, Pike,
Buhl, & Paulsen, 1998). Knowing which type of process is actually present
is at the heart of any explanatory model. Advances in nonlinear time series
analysis (see Kantz & Schreiber, 1999, or Abarbanel, 1996, for reviews) in
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the past decade have given researchers the tools needed to address this
question. For the present context, the time-series analysis of interspike in-
tervals (Longtin, 1993; Sauer, 1994; Racicot & Longtin, 1997; Castro & Sauer,
1997; Hegger & Kantz, 1997) based on methods for nonlinear prediction
(e.g., Farmer & Sidorowich, 1987) is a central topic.

This study provides a starting point for characterizing the nature of the
underlying irregular process. We recorded extended spike trains from in-
terneurons (and, for comparison, some pyramidal cells) from the visual
cortex of mice and applied various methods of linear and nonlinear time-
series analysis to them. With the help of benchmarking tests against sur-
rogate data, we show that based on the data available, a low-dimensional,
deterministic process is unlikely. This leaves a high-dimensional or, for all
practical purposes, a stochastic process as the most likely source. Based
on these results we have devised and analyzed a single-cell model that is
able to reproduce super- and subthreshold findings of various preparations
(Stiefel, Englitz, & Sejnowski, 2004).

2 Methods

2.1 Electrophysiological Recordings. Recordings from rat cortical in-
terneurons were analyzed in this study, the same data set as in a recent
related, study (Stiefel et al., 2004). Briefly, continuous suprathreshold volt-
age traces were recorded with the patch-clamp technique from layer II/III
pyramidal neurons and interneurons in slices of the mouse visual cortex.
The neurons were pharmacologically isolated by blocking excitatory synap-
tic transmission (DNQX, 10 µM, APV, 20 µM) in all and inhibitory synaptic
transmission (Bicuculline, 10 µM) in the majority of cases. The neurons were
driven above firing threshold by injection of constant DC depolarizing cur-
rents, and the voltage was recorded continuously from 16 to 500 seconds.
Spikes trains were constructed from the voltage recordings by noting an
event at the time of each positive threshold crossing of the voltage signal.
Subsequently, interspike interval (ISI) series were constructed by taking the
temporal difference between successive spikes. ISI series are denoted as
SI SI or as SI SI (n) where n denotes the nth ISI in the respective series. Alto-
gether, about 24,000 spikes (out of approximately 38,000 totally recorded)
were analyzed.

2.2 Data Analysis. Analog voltage and spike time data were analyzed
with software custom written in LabView 6.2 (National Instruments, Austin,
TX), Mathematica 4.2 (Wolfram Research, Champaign, IL), and Matlab 6
(The Mathworks, Natick, MA).

For the time-series analysis we used mostly algorithms from the
TISEAN package (Hegger, Kantz, & Schreiber, 1999; Schreiber & Schmitz,
2000), because it is well tested and freely available. We describe them
briefly below, but refer readers to the TISEAN authors’ Web site
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(http://www.mpipks-dresden.mpg.de/tisean/TISEAN 2.1/index.html)
for a more detailed description and the C/Fortran source code.

The general outline of the analysis is as follows (details for each method
are provided with the results). After testing for weak stationarity, we per-
formed a number of simple analyses (spike-triggered averages, delay rep-
resentations, time-dependent mutual information) to detect regularities in
the data. Next we used more sophisticated time-series analysis algorithms
to test for determinism (three nonlinear prediction algorithms and a linear,
autoregressive approach). All tests were conducted on the actual data, ap-
propriate surrogate data (Theiler, Eubank, Longtin, Galdrikian, & Farmer,
1992), and benchmarking data generated by the Hindmarsh and Rose model
(Hindmarsh & Rose, 1984). The results of all tests for determinism are given
with respect to the null hypothesis of a naive prediction based on global
statistical quantities, that is, relative to the standard deviation of the ISIs. A
forecast error of 1 indicates that the prediction is only as good as a predic-
tion based on the mean itself. A relative forecast error of 0 indicates perfect
prediction.

3 Results

3.1 Raw Data and Statistics. We recorded from 16 interneurons, out of
which 8 showed nonadapting, irregular patterns, 4 cells showed IS patterns,
and 4 cells showed ST patterns. Further subclassification according to the
initial response behavior (classical, delayed, bursting; see Gupta et al., 2000)
was omitted, since we were interested in continuous spiking. Multiple,
long (1–10 minutes) recordings containing several hundred to thousands
of spikes each were obtained from the irregularly spiking cells. Cells were
chemically isolated by blocking GABAergic and glutamatergic transmission
(see sections 2 and 4 concerning electrical synapses) to study their intrinsic
dynamics. Recordings were considered for time-series analysis only if they
fulfilled weak stationarity and their length exceeded 500 spikes (see section
3.3 for details).

Sample voltage traces for IS and ST cells are shown in Figure 1A and
corresponding ISI series and histograms in Figures 1B and 1C, respectively.
IS and ST behaviors were easily discernible on the basis of the ISI histogram
shapes, where IS cells showed a moderate peak at the lowest ISIs, directly
followed by an exponentially decreasing distribution of ISIs. ST cells exhib-
ited a dominant peak around the lowest ISIs, followed by a broad, unimodal
distribution at larger ISIs around the mean interburst interval. The CV (see
Figure 1D) for ST cells was significantly higher (p < 0.005 (n = 4), using
two group t-tests) than for IS cells. CVs of these groups were significantly
higher (ST (n = 4): p < 0.001; IS (n = 4): p < 0.04) than for regular and fast-
spiking cells (n = 3). The burst index (BI; percentage of ISIs shorter than
two times the minimal ISI) for ST cells was significantly higher (p < 0.004,
n = 4) than for IS cells (see Figure 1E). These spike statistics persisted over
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Figure 1: Raw voltage and ISI data and global statistics for both irregular cell
types. (A) Sample traces for typical IS (A1, c0314) and ST (A2, c0625) cells.
(B) Small part (<20%) of the ISI sequences corresponding to the IS (B1) and ST
(B2) cell shown in A. (C) ISI histograms for spike trains of the IS (C1) and ST (C2)
cell in A(>1000 spikes each). (D) CVs of the three cell types recorded. Diamonds
show averages for a number of recordings from each cell. The star indicates the
average over the cells in this class. Although CVs vary in each group, the bursts
in ST cells lead to distinctively higher CVs 1.5–3. (E) Burst indices for IS and ST
cell types. Diamonds show averages for a number of recordings from each cell.
The filled circle indicates the average over the cells in this class. Note that the
BI is mainly useful for distinguishing IS and ST cells, whereas regular spiking
cells would have BIs almost equal to 1. Error bars in D and E indicate two SEM
around the mean.

a range of different input currents, where the exact amplitudes depended
on the individual cell (data not shown; see also Markram et al., 2004).

From the subthreshold voltage traces and many other experiments, it is
clear that neurons are noisy systems. Note, however, that this does not nec-
essarily imply that the high variability of the ISIs is a direct consequence of
this noise (especially the ST pattern would require additional explanation).
One could imagine an intrinsic, deterministic process that interacts only
with the membrane potential Vm after passing some threshold, analogous
to the rapid activation of Na-channels, directly causing a spike. Distinguish-
ing between these possibilities is the aim of the following sections.
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3.2 Construction of Surrogate and Benchmark Data. The ISI series can
be used to reconstruct the underlying dynamics (Sauer, 1994) or at least
partially predict the ISI series (Racicot & Longtin, 1997), even when the
dynamics are chaotic. The main challenge in the context of patch-clamp
recordings is the limited number of spikes (≈10,000 met all the criteria; see
section 3.3) and thus the need to validate the analysis using custom sur-
rogate data. Surrogate data share certain properties with the original data
set (e.g., distribution or power spectrum) but with a systematic variation
of the property under investigation. We used three types of surrogate data
(Theiler et al., 1992):

1. To test for any deterministic features in a time series, we created sur-
rogate data from the original ISI data by shuffling the ISIs, denoted as
randomly shuffled (RS) surrogates. This procedure retains all statisti-
cal properties that do not depend on the temporal sequence (e.g., char-
acteristic statistical properties like mean, variance, and distribution).

2. To test for nonlinear features in a time series, we created surrogate
data from the original data that retain their linear properties; that is,
an amplitude-scaled, stationary, linear process is the null hypothesis.
These iterative amplitude adjusted Fourier transform (IAAFT)
surrogates (Hegger et al., 1999; Schreiber & Schmitz, 2000) were
generated using the TISEAN routine “surrogates.” IAAFT surrogates
were employed only if any deterministic structure had been detected
with the first set of surrogate data.

3. To test our data analysis routines on time series generated by a model
with known nonlinear, deterministic dynamics, we used voltage
traces and ISI series generated by a neuronal model (Hindmarsh
& Rose, 1984). The Hindmarsh and Rose (HR) neuron model is
governed by the equations:

dV(t)
dt

= y + 3V2 − V3 − z − I

dy(t)
dt

= 1 + 5V2 − y

dz(t)
dt

=−r (z − 4(V + 1.6)).

The parameters used for obtaining the chaotic regime were r = 0.006
and I ∈ [3.01, 3.08]. For each of these values, noisy versions were sim-
ulated, where white gaussian noise was added to I . The standard de-
viation of this current noise was adjusted to match the experimentally
measured subthreshold standard deviation in voltage σ (V) relative to
the total range of values, that is, the spike height. For recorded cells,
σ (V)/hspike≈0.5 mV/50 mV = 1%. Three levels of noise, leading to
0%, 1%, and 2% subthreshold noise, were simulated in the HR model.
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If the time-series analysis algorithms are unable to detect the presence
of determinism in time series generated by this noisy model, they cannot
be expected to successfully detect determinism in the experimental data
sets. Since the statistics of the HR data set and the experimental data do not
match in all respects, we included results for both RS and IAAFT surrogates
for the HR data.

The HR model was chosen since it can deterministically generate highly
irregular ISI sequences in response to constant input, which are reminiscent
of the ST pattern (see Figure 4). Although the HR’s ISI distribution captures
some aspects of the ISI distributions—both IS and STcells—this confluence
on the level of the ISI distributions is unlikely to render the model more
easily predictable on a dynamical level; for example, Racicot and Longtin
(1997) conclude that for high enough firing rates, ISI histogram shapes dif-
ferent from the original shape can nonetheless lead to good reconstructions.
Consequently, other deterministic models could well have the same ISI his-
togram as either IS or ST cells and still show the same level of predictability
as the HR data.

Comparison with surrogate data can be turned into a significance test
(Kantz & Schreiber, 1999). To attain a desired significance level p, one draws
N = 1/p samples from the surrogate distribution. Then a quantity of inter-
est computed from the given data set is statistically different from this
distribution with probability p if its value lies below or above all N values
computed from the surrogates. Since we chose p = 0.05, 20 surrogates of
each kind were created and analyzed.

Note that the surrogate data sets were designed to contain the same
number of spikes as the data sets under investigation. By keeping this
number constant, we can view the results of the algorithms modulo their
dependence on the number of data points, that is, if the algorithms can
detect determinism in the ISI series generated by the HR model based on
only 1000 spikes but fail to do so in the experimental data, then the source
of variability in the neuron should have greater complexity. Clearly this
approach is incomplete in the sense that ISI series from higher-dimensional
dynamics would not be detected, but it can at least provide a weak lower
limit.

3.3 Stationarity. ISI series SISI were considered stationary or non-
stationary based on the standard criterion of weak stationarity (Kantz &
Schreiber, 1999), that is, constant mean and standard deviation (SD) over
the recording period. Additionally, we compared the spectral content of
the first and second half of each recording. To assess the first criterion, the
standard error of the mean (SEM),

SEM(SI SI ) =
√∑N

n=1(SI SI (n) − 〈SI SI 〉)2)√
(N − 1)N

= sd(SI SI )√
N

,
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and the standard error of the standard deviation,

SES(SI SI ) =
√∑N

n=1(|SI SI (n) − 〈SI SI 〉| − sd(SI SI ))2)
√

N
= sd(sd(SI SI ))√

N
,

were computed for stretches of N = 100 consecutive ISIs. If the distance
between the running mean and the global mean stayed below 2 SEM (= 95%
confidence interval), the null hypothesis of constant mean was maintained,
analogously for the SD (not shown). Data were trimmed or excluded entirely
if they failed to match either the mean or SD constancy.

Figure 2B shows the mean, the SD, and the respective running quantities
for the four typical ISI sequences from two IS cells (1,2) and two ST (3,4)
cells shown in the respective plots of Figure 2A. Overall, 14 of 26 recordings
(containing more than 500 spikes each) from five (two IS, three ST) cells
(totaling 10,205 spikes) fulfilled weak stationarity and were used in the fol-
lowing analyses. In 12 of the 14 recordings, bicuculline and DNQX were
both applied; in the remaining two recordings, only DNQX was applied.
Power spectra were computed using the Matlab function spectrum, which
uses Welch’s averaged periodogram method. As shown in Figure 2C, the
spectra of the first (circles) and second (triangles) half of each data set agree
with each other for almost all frequencies. Results for the other weakly sta-
tionary time series were comparable. Assessing strong stationarity requires
quantitative comparison of the empirically determined probability transi-
tion matrices (Kantz & Schreiber, 1999). Due to the limited number of data,
this type of analysis did not yield conclusive results (data not shown).

Figure 2D shows the autocorrelation of the respective ISI sequences
(black) and the average (dark gray) surrounding the envelope of 20 RS
surrogates (light gray). For one of the IS cell data (1/2) and all of the ST
cell (3/3) data, there exists a small yet significant negative correlation (with
respect to the average at higher separations) for one or two steps. Due to
the duality between autocorrelation and power spectrum, this explains the
depression at low frequencies for Figures 2C2 to 2C4.

3.4 Spike-Triggered Averages, Delay Representations, and Mutual In-
formation. We computed spike-triggered averages (STAs) for isolated and
first-in-a-burst spikes to detect characteristic voltage kernels in the prespike
phase. As shown in Figure 3A, for most cells, the prespike phase was
on average flat, with the exception of an increase in voltage in the last
few milliseconds before the spike. In addition some cells (3/8) showed a
slight hyperpolarization about 10 ms before the spike. This type of kernel is
also obtained in cortical neurons responding to a noisy current (Mainen &
Sejnowski, 1995). For each cell class, STAs of two typical cells are shown,
where base voltages were normalized for easier comparison.
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Figure 2: Weak stationarity can be assumed for most ISI sequences. (A) The
sequence of ISIs for typical recordings from the cells (A1) c0314, (A2) c0903,
(A3) c0310, and (A4) c0625. (B) The running mean (triangles, solid) and SD
(circles, dashed) (points represent averages over 100 consecutive samples) are
graphed, where the error bars indicate their respective standard errors. The
horizontal lines show the global mean (solid) and SD (dashed), respectively,
for visual comparison. (C) Compares the frequency content of the first (circles,
solid) and second (triangles, dotted) half of each data set. (D) The autocorrelation
(normalized to the correlation for 0 shift) of the original time series (black) and
the mean (dark gray) surrounded by the envelope (light gray) of 20 shuffled
surrogates.

Delay representations (DR), often termed “ISI return maps,” are a simple
yet effective way to identify deterministic mapping rules within a time
series. A DR is created by simply mapping the nth versus the n + 1th data
point. If the time series depends on only the last step, the resulting 2D plot
should resemble a functional graph; one-to-many mappings should not
occur. This graph can be disturbed by various sources of noise, which would
lead to a fuzzy mapping—for the nth data point, a limited distribution of
n + 1th data points occurs. But the influence of noise is not expected to
broaden the distribution of n + 1th data points for a given nth data point
to a flat distribution over the whole range of possible values, which would
correspond to a total loss of predictability. This method can be extended to
a greater number of previous steps. We applied this method to all irregular
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Figure 3: Spike-triggered averages, delay representations, and mutual informa-
tion for IS and ST cells. (A) STAs for two IS (A1, c0903 (gray), c0314 (black)) and
two ST (A2, c0625 (gray), 0310 (black)) cells. Note the increase in voltage during
the last few milliseconds before the spike and for some cells (3/8) a decrease
about 10 ms before the spike. (B) Delay representations of the ISIs for two IS
(B1) and two ST (B2) cells. IS cells show a wide distribution for all ISIs. ST cells
show a regular region for the interburst intervals due to the lack of isolated
spikes. However, for the intraburst ISI length, one-step predictability is very
low due to the irregular sequence of interburst intervals. (C) Average mutual
information (MI ) of the ISIs for all cells and permuted ISIs. Remarkably the MI
of the original ISIs and of the permuted ISIs are practically identical. The small
error bars (SD) indicate that this property is well conserved across cells.

spiking cells. Corresponding DRs for two IS and two ST cells are shown in
Figure 3. IS cells (see Figure 3B1) show a wide distribution for all ISIs with an
increasing density toward smaller ISIs, owing to the distribution of ISIs (see
Figure 1C1). ST cells (see Figure 3B2) show an extremely broad distribution
for short ISIs, owing to the ISI following a burst. In addition, the interval
preceding a short interval (horizontal part) is broadly distributed for both
cell types, severely violating the criterion of one-to-many mappings and
indicating only limited one-step functional dependence. Although the HR
model shows more structure in the region from 60 to 120 ms (see Figure 4C),
variability dominates for shorter ISIs. Hence, the character of the process
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Figure 4: Surrogate data sets from the HR model. (A) Voltage-variable traces
from the HR model for 1% noise are shown (voltage value in arbitrary units).
(B) ISI histogram for the data in A containing 1200 ISIs. It contains components
of IS (broadly decaying) and ST (second interburst ISI peak) histograms. (C) DR
of the ISI sequence from A. Some bijective structures, especially in the range of
60 to 120 ms, can be observed, but there are also regions (<60 ms) where no clear
dependence is observed. (D) MI of the ISI sequences for three different levels
of noise (see section 2 for details) and their RS surrogates. Clearly the ISIs in the
original sequences contain more information about the following ISIs than the
RS surrogates and the physiologically recorded ISI sequences (see Figure 3C).
The first minimum was reached between 8 and 15 ISIs, depending on the noise
level. These delays were used for embedding.

underlying the real and the simulated cells is not distinguishable at this
level of analysis. DRs for two consecutive steps were similarly analyzed,
but no succinct regularities were observed. For the ST cells, a modified
DR was computed that shows the next ISI as a function of the number
of spikes in the preceding burst. No clear functional dependence could
be observed (data not shown); however, the number of data points (i.e.,
interburst intervals) becomes comparably small.

The mutual information, MI, between points of a time series separated
by a certain distance in time can help to uncover deterministic regularities
in a time series by computing the amount of information about a future
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data point contained at a current point (Abarbanel, 1996). Adapted for ISI
series, the mutual information at a distance of k ISIs is defined as

MI (k) =
∑

SI SI (n),SI SI (n+k)

P(SI SI (n), SI SI (n + k)) log2

(
P(SI SI (n), SI SI (n + k))

P(SI SI (n))P(SI SI (n + k))

)
.

The MI of the individual ISI series from both cell types and their respective
RS surrogates were practically indistinguishable. In Figure 3 the MI for ISI
series and their RS surrogates are shown as averages over the cells for both
IS and ST cells. The vanishingly small error bars indicate that this reflects
the MI on the level of the individual cells. Based on the surrogate statistics
described above, this means that with respect to the mutual information,
neither of the ISI series differed from their permuted counterparts. These
results contrast with the MI of the HR model and its RS surrogates, where
a clear difference was observed (see Figure 4D). Hence, at the level of
the mutual information, the irregular patterns can be distinguished from
the deterministic HR model, even when the latter includes additive white
noise. The MI is superior to the autocorrelation function since it is sensitive
to linear and nonlinear correlations (Abarbanel, 1996).

3.5 Linear and Nonlinear Prediction. In order to assess the presence
of determinism in the time series, we applied four different time-series
prediction methods on each of the data sets and compared their prediction
errors. Three of the methods—the local linear (Farmer & Sidorowich, 1987;
Longtin, 1993), simple nonlinear, and the radial basis function methods—
rely on a prior embedding of the time series in a reconstructed phase space.
An embedding of an ISI series SI SI turns it into a trajectory in D-dimensional
space by assigning data points SI SI (t), SI SI (t + k), SI SI (t + 2k), . . . , SI SI (t +
(D − 1)k) of the time series to the coordinates in the 1st, 2nd, . . . , Dth
dimension of a new D-dimensional time series SD

I SI . The first step of this
procedure is to select a suitable embedding delay, k, and an embedding
dimension, D. Briefly, the local linear method (TISEAN onestep) uses a
linear approximation based on neighbors of the current point and their
successors to predict the following point within the phase space. The simple
nonlinear prediction method (TISEAN zeroth) computes an average over
the successors of points in a neighborhood of the current point to predict the
next point by taking the mean of all the neighbors’ successors. The radial
basis function method (TISEAN rbf) is a global nonlinear method that fits
the coefficients of localized basis functions to the reconstructed dynamics
and uses the linear combination of these to predict the next point in the
reconstructed phase space. (See Kantz & Schreiber, 1999, for more detailed
descriptions.)

Finally, we used standard autoregressive models (TISEAN ar-model) of
various orders in which a weighted, linear sum of previous data points
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predicts the next point. No phase space embedding is required in this case.
Note that the weights are optimized globally; hence, that is the same rela-
tionship, the same weights, holds for the whole time series.

In order to determine k of each ISI series, we selected the first discernible
minimum of the mutual information as a function of the number of ISIs
(see Figure 3C; Abarbanel, 1996). For the recorded ISI series and all the RS
surrogates, this minimum lay between 1 and 4 ISIs. The first zero crossing
of the autocorrelation always yielded k = 1 ISI (see Figure 2D). In contrast
k’s between 9 and 15 ISIs (depending on the noise level) were found for the
HR neuron (see Figure 4D). As expected, the mutual information degraded
faster for stronger noise amplitudes. Averages over the given ranges of k’s
were used in the following to reduce the bias of an inappropriate choice
of k. From the original work of Takens (1981), the reconstruction should
be stable under (small) variations of k. The positions of the minima were
largely independent of the number of boxes used in estimating the mu-
tual information. No significant increases of the mutual information were
observed for k’s beyond the range shown.

The appropriate D for the embedding is often chosen by the false nearest-
neighbor method (FNN; Kennel, Brown, & Abarbanel, 1992). We applied
this method to all time series using the range of k’s found. Although sig-
nificant quantitative differences were seen, none of the time series, except
for the noise-free HR model, fulfilled the criterion of dropping below 1%
to 5% of false nearest neighbors. Using low plateaus (<20% FNNs; Kennel
et al. 1992) as a criterion for the correct embedding dimension under the
influence of noise, the noisy HR models embedded in dimensions 4 to 6.
The recorded ISI series did not reach lower plateaus (≈40% FNNs) than
their RS surrogates, which can taken as an indication that no further de-
terministic dynamics were separated by increasing D. A marked difference
was already apparent at D = 1: the clean HR data started at only 50% FNNs,
whereas the recorded ISIs started at about 98% FNNs.

Since we were not able to confidently determine Ds for most of the
data sets, we performed the tests for determinism with a range of relevant
Ds. Figure 5 shows the results for all data sets and all algorithms. All
average forecast errors are given with respect to the standard deviation
of the respective ISI series. A relative forecast error of 1 corresponds to
trivially guessing the mean every time. To avoid overloading the graphs
with curves, only the error bars, rather than individual predictions for each
record and embedding delay, are shown. These averages and the error bars
were computed over the individual recordings and the relevant range of k
(see above).

Both the phase-space prediction methods (local linear, see Figure 5A; 0th
order, see Figure 5B; radial basis function, see Figure 5C) and the linear
method (autoregressive model, see Figure 5D) detected determinism in the
HR ISI series. Of the nonlinear methods, the local linear method performed
best and showed the shallowest dependence on the embedding dimension.
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Figure 5: Tests for determinism in the spike trains. Relative forecast errors
based on one-step-ahead predictions by (A) the local linear approach, (B) the
zeroth-order approach, (C) the radial basis functions, and (D) autoregressive
model of various order. Predictions for spike trains recorded from interneurons
(diamonds: IS: black, ST: gray), their RS surrogates (asterisks: IS: black, ST: gray)
and the HR data are shown (legend in B applies to all plots). Error bars always
indicate two SEMs, except for the surrogates, where they are envelopes over
20 realizations. The mostly small SEMs indicate that all analyzed recordings
behaved alike.

The simple nonlinear and radial basis function methods performed simi-
larly, having analogous dependencies on the embedding dimension, which
is again a consequence of the sparseness for higher D.

The AR model performed, even for quite high orders, markedly poorer
than the embedding methods for lower dimensions, and the quality of its
predictions was weakly negatively correlated with the model order used.
The slightly negative autocorrelation of the ST records (see Figure 2D3 or
2D4) is reflected here in a 4% reduction of the prediction error. We computed
the Akaike information criterion (AIC) (Akaike, 1974) (i.e., AI C(SI SI , k) =
2 σ (SI SI )2k − 2 MSE , where k is the order of the AR model and MSE is the
mean squared error of the prediction). The AIC is already minimal for k = 1,
indicating that increasing the model order is not recommended given the
decrease in MSE.
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With regard to the results for the HR model, the successful prediction
by embedding methods (for D = 1) is a consequence of the stereotypic in-
crease of the ISIs within a burst and the similarity of interburst intervals
after certain intraburst intervals. The chaotic nature does not limit one-step
prediction, since chaos manifests itself in the variable number of spikes
within a burst and the distance between bursts. Consequently, the embed-
ding methods can successfully use information gained from neighbors in
phase space, that is, examples from previous bursts. As noted in the de-
scription of the FNN results, such behavior could have been expected, since
the FNNs at D = 1 are much lower for the HR than for the IS/ST data.
Interestingly, this dependence of the prediction error on D has been ob-
served before: a Fitzhugh-Nagumo system driven by the x component of
the chaotic Rössler system gave similar results, especially in the high-firing-
rate regime, where more faithful reconstruction & expected (see Racicot &
Longtin, 1997, Fig. 10). Conversely the AR method performed poorly since
it estimates a global, linear model. For low orders, it fails because a linear
model cannot capture the nonlinear change in the ISIs. With increasing or-
ders, the shortcomings of linearity can be overcome partially, since linear
combinations of intraburst ISIs can be used to predict the following in-
traburst ISIs. This explains the agreement between the average number of
spikes in a burst (4–5) and the order of the AR method at which the decrease
of the error levels off (4–5). Nonetheless, the global nature of the AR method
in the end prevents it from reducing the error further, since the sequence
of ISIs changes so abruptly between interburst and intraburst intervals that
both types of intervals can hardly be predicted by the same coefficients.
To test directly whether the predictions were based on linear or nonlinear
properties of the HR data, we compared these to predictions based on the
IAAFT surrogates (see Figure 6), which retain the linear properties of the
time series (see section 2). For the embedding methods (see Figures 6A to
6C) prediction of the IAAFT surrogates is significantly impoverished mostly
up to D = 4, indicating that the removed nonlinear features were effective
in predicting the following ISI. Conversely, in the AR method, prediction
results hardly differ between original data and IAAFT surrogates (see Fig-
ure 6D), indicating that the AR method used only the linear properties of
the data for prediction.

Significantly, however, these results indicate that reducing uncertainty
in prediction based on ISI series from a nonlinear, even chaotic process is
possible, given as few as 1000 ISIs.

In contrast, none of the prediction methods detected any predictability
in any of the ISI time series recorded from interneurons (relative forecast
error ≈1) and their RS surrogates. Although this was expected for all RS
surrogates, for the experimental data, especially due to the occurrence of
bursts, at least some predictability might be expected. The wide range of
interburst intervals and the variable number of spikes per burst leads to the
observed chance level in prediction (given the mean).
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Figure 6: Tests for nonlinear determinism in the spike trains. Relative forecast
errors based on one-step-ahead predictions by (A) the local linear approach,
(B) the zeroth-order approach, (C) the radial basis functions, and (D) autore-
gressive model of various order. Predictions for the HR data and the IAAFT
surrogates of the HR data are shown (legend in B applies to all plots). Error
bars denote two SEMs.

4 Discussion

The irregular firing patterns of cortical GABAergic interneurons we an-
alyzed did not show any sign of determinism. Based on the number
of data analyzed and the benchmarking tests, we conclude that a low-
dimensional, deterministic process is highly unlikely to be the source of
the variable discharges. Consequently, a high-dimensional or, for practi-
cal purposes equivalently, a stochastic process is the most likely expla-
nation for the high variability of consecutive ISIs. Such a mechanism,
however, renders endogenous pacemaking an unlikely function for these
classes of interneurons, which would require an autonomous, deterministic
process.

The lack of evidence for a low-dimensional, deterministic process is
tempered by a number of possible limitations: First, the sampling (i.e.,
spike rate) might not have been sufficiently high. Simulations have shown
that the relation between the timescales of an underlying process and the
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rate at which the underlying process is sampled is a critical determinant
for successful reconstruction of the original system dynamics (Racicot &
Longtin, 1997). Higher sampling rates typically lead to better quality of re-
construction, although lower rates also resulted in a considerable reduction
in prediction error. Whether the sampling rate, that is, the mean firing rate,
was adequate for the (potentially) underlying timescales cannot be known
unless prediction is (at least partially) achieved.

A second possible limitation for the lack of evidence of determinism
could be the existence of a large, slow noise source. If some noise source
exists, which influences the dynamics rarely but severely, the potentially
detectable determinism would be seriously disturbed. The footprints of this
source could be hidden at certain spike onsets and thus remain undetected
in the STA.

A final, and probably the most important, limitation of our analysis is
that neither the number of spike trains nor the number of spikes is ad-
equate to reach precise conclusions. Unfortunately, obtaining longer, sta-
tionary data has proven to be extremely difficult due to the fragile nature
of interneurons under the required recording conditions (extended stimu-
lation and penetration). In this context, patch clamp recordings had to be
preferred over extracellular recordings in order to stimulate the (otherwise
silent) cells and check for isolation. We attempted to compensate the low
spike counts by the use of appropriate surrogate data and selecting the
longest and most stationary spike trains only. Thus, although it is difficult
to reach precise conclusions, the complete lack of predictability for the ex-
perimental data is indicative of the lack of a low-dimensional, deterministic
process. At the same time, it should be emphasized that the rapid decline of
predictability with increasing D for the HR data indicates that for higher di-
mensions, the number of spikes is too low to distinguish determinism from
randomness.

In the case of a stochastic process, it remains to be explained why the
distribution of the ISIs does not resemble the distribution of the underlying
noise sources; neither follows a Poisson or a gamma distribution. A specific
mechanism needs to exist that transforms the distribution of the underlying
process into the observed distribution. It is known that this cell class exhibits
a high responsiveness with respect to certain weak inputs (Wilson et al.,
1990), that is, some input fluctuations are gated into eliciting spikes or even
burst sequences.

A plausible general candidate mechanism would be a subcritical Hopf
bifurcation, that is, stochastic switching between a stable fixed point (resting
potential) and a stable limit cycle (repetitive spiking) as detailed in Ermen-
trout (1998) and Brown, Feerick, and Feng (2001). This mechanism and the
reported results are incorporated in our recently proposed model (Stiefel,
Englitz, & Sejnowski, 2007) which details how interneurons could trans-
form voltage noise into irregular spike times. This Hodgkin-Huxley type
model (Hodgkin & Huxley, 1952) includes a fast K +-conductance, which
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creates a substantial region of bistability in phase space (switching region;
Rowat, 2007) between the rest state and continuous spiking. Noise can
easily transfer the neuron between these modes, thus exhibiting stochastic
switching between burst firing, single spikes, and quiescence. For different
parameter ranges, the model resembles the IS and the ST behavior in terms
of CV and also ISI distribution.

The observed variability could also arise as a superposition of many
deterministic processes, especially electrically coupled interneurons. This
would mean that the observed variability would derive from network ac-
tivity rather than single-neuron dynamics. We did not use pharmacological
blockers of gap junctions as they show limited specificity and thus also
interfere with other intracellular mechanisms and are therefore inadequate
for studying endogenous dynamics (Rozental, Srinivas, & Spray, 2001).
Several factors speak against a contribution of gap junctions to our data.
First, we did not observe any potentials that could have originated in other
neurons (spikelets) in any of our recordings. This was true for both near-
threshold potentials (used for the time series analysis) and recordings at
hyperpolarized potentials. The later recording conditions make a detection
of gap-junction-mediated potentials much more likely due to the voltage
difference between coupled cells and the quiescence of the membrane po-
tential. Second, gap junctions mostly couple interneurons of the same class
(Amitai et al., 2002). Because all recorded cells were not spontaneously ac-
tive, other coupled cells are unlikely to be spontaneously active. Thus, we
can be reasonably sure of the absence of gap-junction-mediated potentials
in our recordings.

The main source of noise in isolated neurons is channel noise, generated
by the stochastic opening and closing of individual ion channels (Hille,
2001). The existence of irregular activity is indicative of a high sensitivity to
noise and fluctuations, which becomes functionally important in vivo when
massive barrages of synaptic potentials arrive at the dendrite (Destexhe,
Rudolph, & Par, 2003). Interneurons should be strongly driven by this highly
irregular input and may introduce additional variability. This sensitivity of
the spike initiation dynamics of ST and IS interneurons to voltage noise
is thus likely to preserve or even enhance the discharge variability of all
neurons in the cortical network.
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